The Influence of Carbonaceous Matrices and Electrocatalytic MnO2 Nanopowders on Lithium-Air Battery Performances
نویسندگان
چکیده
Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO₂ nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD), energy dispersive X-ray (EDX)), morphological (SEM, high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM)/TEM), surface (Brunauer Emmet Teller (BET)-Barrett Joyner Halenda (BJH) method) and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed. The GDE performances are evaluated by chronopotentiometric measurements to highlight the effects induced by the adopted materials. The best combination, hollow core mesoporous shell carbon (HCMSC) with 1.0% Ag-doped hydrothermal MnO₂ (M_hydro_1.0%Ag) allows reaching very high specific capacity close to 1400 mAh·g-1. Considerably high charge retention through cycles is also observed, due to the presence of silver as a dopant for the electrocatalytic MnO₂ nanoparticles.
منابع مشابه
Enhanced wettability and electrolyte uptake of coated commercial polypropylene separators with inorganic nanopowders for application in lithium-ion battery
In this research, inorganic material type and content influence on coating of commercially available polypropylene (PP) separator were studied for improving its performance and safety as lithium ion battery separator. Heat-resistant nanopowders of Al2O3, SiO2 and ZrO2 were coated using polyvinylidene fluoride (PVDF) binder. Coating effects on the separators morphology, wettability, high tempera...
متن کاملMnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery
Two α-MnO2 crystals with caddice-clew-like and urchin-like morphologies are prepared by the hydrothermal method, and their structure and electrochemical performance are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), galvanostatic cell cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The morphology of the MnO2 prepared under acidic con...
متن کاملStudying lithium-ion battery packs cooling system using water-nanofluids composition
In this study, the Li-ion batteries temperature increase during the discharge process was measured empirically and evaluated using numerical simulation. Moreover, the battery packs cooling using the water, air and water-nano composition fluids such as water-alumina, water-copper oxide, and water-gold was studied through numerical simulation. Accordingly, the battery cooling was simulated by CFD...
متن کاملGoldePalladium nanoparticles supported by mesoporous b-MnO2 air electrode for rechargeable Li-Air battery
The electrochemical performance and electrode reaction using AuePd nanoparticle (NP) supported mesoporous b-MnO2 as a cathode catalyst for rechargeable Lithium-Air (Li-Air) battery is reported here for the first time. In this study, AuePd NP-supported mesoporous b-MnO2 was successfully synthesized by hydrothermal process using a silica KIT-6 template. It has an initial discharge capacity of ca....
متن کاملMicrostructural and spectroscopic investigations into the effect of CeO2 additions on the performance of MnO2 aqueous rechargeable battery
The influence of CeO2 additions on the electrochemical behaviour of the MnO2 cathode in a Zn-MnO2 battery using lithium hydroxide (LiOH) as an electrolyte is investigated using microscopy and spectroscopic techniques. The results showed that such additions greatly improve the discharge capacity of the battery (from 155 to 190 mAh/g) but only from the second discharge cycle onwards. Capacity fad...
متن کامل